
1© Cost Xpert Group, Inc. All rights reserved. www.costxpert.com

Estimating Software Reuse
Equivalent Function Points

By William Roetzheim
william@costXpert.com

2© Cost Xpert Group, Inc. All rights reserved. www.costxpert.com

Agenda
Introductions
Overview
Maintaining Existing Code
Modifying Existing Code
Calculating Equivalent Function Points
Percent Design Modification
Percent Code Modification
Percent Integration and Test
Calculating Adaptation Adjustment Factor (AAF)
Sample One
Three Additional Factors
Sample Two
Sample Three
Some Tricks
Dealing with New Functionality

3© Cost Xpert Group, Inc. All rights reserved. www.costxpert.com

Introductions
William Roetzheim is the founder of the Cost Xpert Group and has been
involved in software estimation, project management, and metrics for over
twenty-five years. He is the author of 15 technical books, over 100 papers,
and holds two patents pending. Mr. Roetzheim has an MBA and has
completed course work for a Masters degree in Computer Science. He can
be reached at william@costxpert.com.

4© Cost Xpert Group, Inc. All rights reserved. www.costxpert.com

Overview
At a high level, maintenance projects consist of three types of work:

1. Maintaining an existing, functioning application;
2. Modifying existing code to support changing requirements; and
3. Adding new functionality to an existing application.

A team doing a new build for an existing application would only be concerned
with items 2 and 3.
A team keeping an existing code base functioning would only do item 1, and
possibly item 2 depending on how new builds are handled.
A project manager may be responsible for both areas and might need to
estimate the effort required for all three.

5© Cost Xpert Group, Inc. All rights reserved. www.costxpert.com

Maintaining Existing Code
Maintenance as we’re defining it consists of three types of activities:

Corrective maintenance: Fixing bugs in the code and documentation.
Bugs are areas where the code does not operate in accordance with the
requirements used when it was built.
Adaptive maintenance: Modifying the application to continue functioning
after installation of an upgrade to the underlying virtual machine (DBMS,
operating system, etc.); and
Perfective maintenance: Correcting serious flaws in the way it achieves
requirements (e.g., performance problems).

Maintenance effort is a function of the development effort spent on the
original project. The larger the original project in terms of effort, the more
staff must be assigned to maintain the application. Various models to
estimate maintenance are documented in the literature and embedded into
commercial cost estimating tools, and these estimates are beyond the scope
of this talk.

6© Cost Xpert Group, Inc. All rights reserved. www.costxpert.com

Modifying Existing Code
The basis of code modification is very simple: code already exists that may
be utilized in any given project. You begin with a complete function point
count for the existing application.

7© Cost Xpert Group, Inc. All rights reserved. www.costxpert.com

Calculating Equivalent Function Points
Our goal is to convert from the known value for the existing function points to
an equivalent function point volume for the new code. In a simplified sense,
think about it this way.

If we have 100 function points worth of reusable code but the reusable
code is worth nothing to us, then no effort will be saved, the equivalent
amount of new code is 100 function points.
If we have 100 function points worth of reusable code and we can reuse it
without any changes, re-testing, or integration whatsoever, then using the
code is a “freebie” from a developmental perspective. The equivalent
amount of new code is 0 function points.
If we have 100 function points worth of reusable code and this saves us
half the effort relative to new code, then the equivalent amount of new
code is 50 function points.

We convert from reused volume values to equivalent new volume values by
looking at three factors: Percent Design Modification, Percent Code
Modification, Percent Integration and Testing.

8© Cost Xpert Group, Inc. All rights reserved. www.costxpert.com

Percent Design Modification
Percent Design Modification measures how much design effort the reused
code will require. Basically, a low percent value indicates high code reuse,
whereas a high percent value indicates low code reuse and increases the
requirement to develop new code:

A value of 0% says that the reused code is perfectly designed for the new
application and no design time will be required at all.
A value of 100% says that the design is totally wrong and the existing
design won’t save any time at all.
A value of 50% says that the design will require some changes and that
the effort involved in making these changes is 50% of the effort of doing
the design from scratch.

For typical software reuse, the Percent Design Modification will vary from
10% to 25%.

9© Cost Xpert Group, Inc. All rights reserved. www.costxpert.com

Percent Code Modification
Percent Code Modification measures how much we will need to change the
physical source code:

A value of 0% says that the reused code is perfect for the new application
and the source code can be used without change.
If the reused code was developed in a different language and you need to
port the code to your current language, the value would be 100%.
Numbers in between imply varying amounts of code reuse.

The Percent Code Modification should always be at or higher than the
Percent Design Modification. As a rule of thumb, we have found the Percent
Code Modification is often twice the Percent Design Modification.

10© Cost Xpert Group, Inc. All rights reserved. www.costxpert.com

Percent Integration and Test
Percent Integration and Testing measures how much integration and testing effort
the reused code (the entire reused application) will require:

A value of 0% would mean that you do not anticipate any integration or integration
test effort at all.
A value of 100% says that you plan to spend just as much time integrating and
testing the code that you would if it was developed new as part of this project.
Numbers in between simply refer to differing degrees of integration and testing
effort relative to new development.

The Percent Integration and Test should always be at or higher than the Percent Code
Modification. It is recommended that you set the Percent Integration and Test to at
least twice the Percent Code Modification.
It is not unusual for this factor to be 100%, especially for mission critical systems where
the risk of failure is significant. For commercial off-the-shelf components (purchased
libraries) where the Percent Design Modification and Percent Code Modification are
often zero, it is not unusual to see a number of 50% here to allow for the integration
effort and time spent testing the application with the commercial component.

11© Cost Xpert Group, Inc. All rights reserved. www.costxpert.com

Calculating AAF

TICMDMAAF &3.3.4. ++=
AAF = Adaptation Adjustment Factor

12© Cost Xpert Group, Inc. All rights reserved. www.costxpert.com

Sample One
Suppose that we identify a reusable application we can purchase with source
code. We count the function points and find that the application has 1,000
function points. Let’s assume that the correct value for design modification is
25%, the correct value for code modification is 50%, and the correct value for
integration and test is 100%. What would be the equivalent function points?

Equivalent Function Points = AAF x 1,000
= [(0.4 x 0.25) + (0.3 x 0.5) + (0.3 x 1.0)] x 1,000

= 0.55 x 1,000
= 550

13© Cost Xpert Group, Inc. All rights reserved. www.costxpert.com

Three Additional Factors
Assessment and Assimilation (AA) indicates how much time and effort will be
involved in testing, evaluating and documenting the screens and other parts of the
program to see what can be reused. Values range from 0% to 8%.
Software Understanding (SU) estimates how difficult it will be to understand the
code once you are modifying it, and how conducive the software is to being
understood. Is the code well-structured? Is there good correlation between the
program and application? Is the code well-commented? A numeric entry between
10% and 50%, default 30%.
Unfamiliarity (UNFM) with Software indicates how much your team has worked
with this reusable code before. Is this their first exposure to it, or is it very familiar?
The range of possible values is between 0 and 100%, default 40%.

These three factors add a form of tax to software reuse, compensating for the
overhead effort associated with reusing code.
For projects where the amount of reuse is small (AAF is less than or equal to 50%), the
following formula applies with adjustments per the above factors:
Equivalent Function Points =

ReusedFunctionPoints x [AA + AAF (1+ 2 x SU x UNFM)]

14© Cost Xpert Group, Inc. All rights reserved. www.costxpert.com

Sample Two
Let’s take our earlier example involving 1,000 reused Function Points.
Suppose we found that we could get by with 10% design changes, 20% code
changes, and 40% integration and test effort. AAF would then be calculated
as:

•AAF= (0.4 x 0.1) + (0.3 x 0.2) + (0.3 x 0.4) = 0.22
Because AAF is less than or equal to 50% we can use the formula just
presented. Now, suppose that AA was 4%, SU was 30%, and UNFM was
40%.
The equivalent function points would now be:

EquivalentFunctionPoints = 1000 [0.04 + 0.22 (1+ 2 x 0.3 x 0.4)]
= 261

15© Cost Xpert Group, Inc. All rights reserved. www.costxpert.com

Sample Three
The formula when reuse is low and AAF is greater than 50% changes. The
formula in this situation is:

EquivalentFunctionPoints
= ReusedFunctionPoints x [AA + AAF + (SU x UNFM)]

Let’s work through our same example of 1,000 reusable function points, but
let’s suppose that the design modification was 50%, the code modification
100%, the integration and test was 100%, and the correct values for AA, SU,
and UNFM were 8%, 50%, and 100% respectively.
AAF is now calculated as:
•AAF = (0.4 x 0.5) + (0.3 x 1.0) + (0.3 x 1.0) = 0.8

EquivalentFunctionPoints = 1000 x [0.08 + 0.8 + 0.5 x 1.0]
= 1,000 x 1.38

= 1,380

16© Cost Xpert Group, Inc. All rights reserved. www.costxpert.com

Some Tricks
If you are doing an on-going series of maintenance builds with a large,
relatively stable application there are some tricks to simplify your planning.
Create a spreadsheet containing all of the modules and for each module,

the function points in that module. Set percent design mod, code mode, and
so on to zero for each module in the spreadsheet.
It is also useful in the spreadsheet to include an area where you identify the
dependent relationships between modules
Save this as your master template for planning a new build.
When you are planning a build, analyze each requirement for change to
identify the modules that must be modified and fill in the appropriate value for
DM, CM, etc. Then, look at the modules that are dependent on these
modules and put in an appropriate value for Integration and Test for those
dependent modules.

17© Cost Xpert Group, Inc. All rights reserved. www.costxpert.com

Dealing with New Functionality
This functionality is defined and estimated as new development using the
standard approaches suitable for estimating new software function points.

18© Cost Xpert Group, Inc. All rights reserved. www.costxpert.com

Conclusions
A significant part of estimation deals with software reuse/maintenance
projects. This includes maintenance build projects and making decisions
about reusing existing code versus rewriting new code. This talk presented a
quantitative approach to estimating the equivalent function points for a
software reuse/maintenance effort. In other words, we showed the
participants how to modify a function point count in a reuse/maintenance
project to reflect the equivalent function point effort for new development.
This process involved adapting the reuse work performed by the COCOMO II
research team to the function point world. Case studies were used to
illustrate the approach in making trade-off decisions.
William Roetzheim can be reached at william@costXpert.com or (619)
917.4917

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

