
How to Estimate Software Size and Effort in Iterative 
Development1 

Aleš Živkovič, Marjan Heričko 
 

University of Maribor, Faculty of Electrical Engineering and Computer Science,  
Smetanova 17, SI-2000 Maribor, Slovenia 

e-mail: ales.zivkovic@uni-mb.si 
 
 

Abstract 
Iterative development has become the predominant development approach. While providing 
several benefits for developers, iterative development makes size and effort estimates more 
difficult. The main problem is incomplete artifacts between iterations. In this paper an 
approach that enables early size estimation using Unified Modeling Language (UML) artifacts 
is presented. The approach incorporates self-improvement steps that increase estimation 
accuracy in subsequent iterations. A demonstration of its applicability and research results are 
also presented. The results anticipate the possibility of a significant improvement in size and 
effort estimates by applying the approach presented here. 
 
Keywords: iterative development, Function Point Analysis method, object-oriented size 
estimation, effort estimates 

1 Introduction 
For accurate project planning, effort estimate is one of the most important values. Effort is 
calculated using software size as [8,19]: 

mSizenE )(∗=  
where E is Effort in man-months, n and m are empirically calculated factors and Size is 
software size expressed in some suitable metric (i.e. Lines Of Code, Function Points, Use 
Case Points, Object Points, Number of Screens). This paper uses Function Points (FP) to 
express software size. In general, the estimation methods can be categorized as: (1) expert 
opinion, (2) using benchmark data, (3) analogy, (4) proxy points, (5) custom models and (6) 
algorithmic models [8, 19]. Algorithmic size estimation methods like Function Point Analysis 
(FPA) [1, 10], Mk II FPA [28] and COSMIC-FFP [6] can provide an estimator with a simple 
and powerful approach to obtain accurate information on a project’s size, which can then be 
used to calculate the necessary development effort according to the statistical data taken from 
industry-specific repositories. Current algorithmic methods and approaches demand 
information about the software system at some level of abstraction, which should be equal for 
all parts of the system being built. However, iterative development produces artifacts at 
different abstraction levels that are valid within the same iteration. Subsequently, the size 
estimator can not apply size estimation methods early enough in the development process to 
make sense for project planning activities. The artifacts in iterative development become a 
suitable input for algorithmic size estimation methods in the last iteration, when the software 
size, no matter how accurate it is, has little value for the duration, or cost predictions, of the 
current project.  

                                                 
1 This paper is an abridged version of the scientific paper "The Size and Effort Estimates in Iterative 
Development" published in Information and Software Technology, vol. 50, issue. 7-8, pp. 772-781. For 
mathematical models and empirical data please see the original paper.  



The solution presented in this paper employs early estimates based on use cases and combines 
them with more accurate class-diagram-based estimates. Therefore, different abstraction 
levels for the software system are defined. Each abstraction level uses an algorithm that 
transforms abstraction elements into software size. The accuracy of the transformation 
depends on the quality of the abstraction itself and the relevance of historical data that fulfills 
the abstraction gap. The abstraction gap is the gap between the model and the actual system or 
code.  
Most size-estimation methods are function-based and can be applied during the analysis 
development phase. The early estimation methods are mainly heuristic. The focus of this 
research is on algorithmic approaches and therefore excludes comparison with heuristic 
approaches. None of the function-based methods were constructed for size estimation in 
iterative development since they do not deal with incomplete artifacts. There are only a few 
object-oriented methods available. Object Points [8] and Object-Oriented Function Points 
(OOFP) [2] are based on information in the analysis or design class diagram which becomes 
available late in the analysis phase. Predictive Object Points [8] combine information in the 
class diagram with selected product metrics in order to predict effort. Beside heuristic 
methods only two algorithmic methods could be applied very early in the project life cycle - 
Use Case Points (UCP) [18] and an improved Object-Oriented Function Point method named 
OOFP2 [30]. The latter is a combination of algorithmic and heuristic approaches since it uses 
historical and benchmark data in its early estimates.  

2 Abstraction levels 
Abstraction is an important concept when presenting and reasoning about software systems. It 
helps us present a problem without the details that are not critical for the purpose of the 
discussion in question. Using abstraction, the same issue can be presented in different ways, 
highlighting only those details in the solution space that are important at the present level of 
dealing with the problem. During object-oriented development, different models of a software 
system are produced. Models do not represent the actual system running on the machines; 
they are abstractions of the code. Going through different project development phases, models 
become less abstract and closer to the code. Let us illustrate this with an example. 

 
Figure 1: The Software Models and UML diagrams used with Different Abstractions 

Figure 1 shows different software models and the corresponding Unified Modeling Language 
(UML) diagrams [23, 24] used with different abstractions. In this example, the Use Case (UC) 
model represents the first and, therefore, less-detailed abstraction of the object-oriented 
application. The domain model is a second abstraction in this example and the design model 
represents the third -- the most-detailed abstraction that is also closest to the actual code. The 



abstractions in Figure 1 are only one example that is commonly used in object-oriented 
development. 
The abstraction level limits the amount of information about the software system available in 
the individual steps of the development process. The information quantity, as well as quality, 
further limits the ability to perform software size estimation. Information Quality usually 
defines the Functional Size Measurement (FSM) method [13, 14], or its steps, and defines the 
expected accuracy, reliability and costs of the size estimation process. As an example, Table 1 
summarizes the levels of function point count as defined in [26]. The six levels defined are: 
Size Approximation (Level 6), Rough Count (Level 5), Default Complexity Count (Level 4), 
Detailed Count (Level 3), Detailed Linked Count (Level 2) and Detailed Linked and Flagged 
Count (Level 1). Although each level has its characteristics and applicability in practice, this 
rough overview shows two accuracy classes with similar documentation reliability and cost 
characteristics. The accuracy class defines the average estimation error that characterizes the 
level. Levels one, two and three are grouped into the first 10% accuracy class. Levels four, 
five and six are in the second, 20% class.  
 

Level of FP Count Characteristic 
Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 

accuracy very good 
~10 % 

very good 
~10 % 

very good 
~10 % 

good 
~15 % 

acceptable 
20 - 25 % 

acceptable 
around 20 % 

reliability high high high average average low 
costs very high high average low low very low 
input data details very high high high average low very low 
documentation 
level 

well 
documented 

documented documented documented partially 
documented 

not 
documented 

repeatability repeatable repeatable repeatable repeatable partially 
repeatable 

not repeatable

maintainability small small small medium high very high 

Table 1: Total Metrics' Function Point Count Levels 

 
To make the idea more understandable, grouped abstraction levels are used. The first 
abstraction level uses use case diagrams. For each use case from the use-case diagram, a 
rough estimate for the number of activities/steps needed to fully accomplish the functional 
task of the use case is defined with an activity diagram. This estimate is labeled as Early. 
Another abstraction level used in this research uses a final version of the domain class 
diagram. This estimate is labeled as Comparative. The limit of two abstraction levels was set 
in order to make traceability through iteration possible and to enable the reader to follow the 
main idea of the work. In practice, the number of abstraction levels can be different. In case of 
more abstraction levels, the method could be expanded to incorporate one estimate for each 
abstraction level in each iteration. 

2.1 Size estimation method 
Size estimation is performed with the OOFP2 method. This section summarizes that 
approach. For a more detailed description please see [29, 30]. The early estimates are based 
on use case and activity diagrams [23, 24]. The use case diagrams are available early in the 
project’s life cycle. Use cases are usually briefly described using natural language. The 
description is needed to be able to divide use cases into iterations and to build an iteration 
plan. When a more detailed use case description becomes available, re-assessment is 
automatically made using a tool.  



In the OOFP2 approach, size estimation is done in three stages. What estimate to apply 
depends on what information is available. In iterative estimates presented in this paper only 
two estimation stages are used. The two estimation stages are: 
 

- Early estimation (UCD&AD) - with additional information available, the statistically 
founded basic estimate can be replaced with an estimate based on actual project data. 
The activity diagrams are used in this estimation; results from sequence diagrams are 
also considered.  

- Final estimation (CD) - this estimation is based on the domain class diagram using 
OO-to-FPA mapping, as described in [30]. This estimate is the final one in the 
prediction cycle. The estimates that follow are performed for purposes of comparison 
and repository fulfillment only.  

 

3 Iterative development 
An iterative process makes it possible to easily accommodate changes, to obtain feedback and 
factor it into the project, to reduce risk early, and to adjust the process dynamically [9]. 
Iterative development dramatically changed the software development process that was 
previously in use in the 1990s. The processes in use at that time focused on each 
developmental step until all the artifacts were produced, when the transition to the next step 
was made. The incorrectness from previous steps was amplified in subsequent steps without 
the possibility of verifying the correctness of the results. In iterative development, on the 
other hand, the development process has been divided into several iterations where all the 
steps are performed in each iteration, producing only partial results for each step. For 
example, if the project has three iterations, the detailed description of all use cases is produced 
at the beginning of the third iteration. However, the results of the previous two iterations will 
also include the full implementation of functionality assigned to these iterations. The 
advantages are obvious. The likelihood of a successful project completion is higher beginning 
with each new iteration. The development cycles are shorter and therefore give more 
opportunities for user feedback. Consequently, the probability of delivering the right 
functionality with satisfactory usability is also greater in comparison with traditional 
development.  
Despite all of the positive aspects, iterative development has several side effects. One of them 
is with regard to software size estimation. To estimate software size accurately in object-
oriented development, the final version of the domain class model has to be available [2, 7, 
29, 30]. As already described in this section, the final versions of object-oriented artifacts are 
developed in the last iteration. However, the outline of the complete project plan must be 
conducted at the beginning of the project in the first iteration. This initial project plan is then 
updated at the end of each iteration to reflect deviations between the planned activities and 
performed activities. Now, if we do not have appropriate inputs for the existing size 
estimation methods, the methods can not be applied. The second best solution is the use of 
methods for early estimates. These methods usually rely on statistical data, repositories, and 
industry average values [12, 18]. The size and effort problem is reduced since some initial 
estimates are available for project planning. We can take this improvement a step forward by 
joining early estimate methods with the methods for final estimates in object-oriented 
development. The basic idea comes from the eXtreme Programming (XP) [4] community 
where members of the team help their coach estimate the size of user stories. The team then 
declares how much effort capacity they think they will average per iteration. That figure is 
called velocity [4]. The customer creates a release plan grouped into iterations according to 
the project effort estimate and the velocity. In XP, the iterations have a fixed duration. The 



number of finished story points in the last iteration is used as an estimate for how many points 
will be done in the next iteration. This principle is called "Yesterday's Weather" and its 
guiding principle is: the best predictor for today's weather is yesterday's weather. Measuring 
the time needed for implementing user stories (or use cases), the coach gets an idea of a 
team's performance and is able to correct the velocity estimates for subsequent iterations. The 
velocity may bounce around the actual value, but it usually stabilizes quickly. This is due to 
the use of relative estimates instead of absolute ones. In this research, the process of the 
velocity estimate is applied to size estimates. If the process is repeated long enough, the 
prediction can come as close to the actual value as the estimator wants (Cauchy condition of 
limit existence). Figure 2 illustrates this process for size estimates.  

 
Figure 2: Improvement of Estimates through Iterations 

Assume that a project size is 200 function points (FP). At the beginning of the project, the 
estimate is 160 FPs. After the use cases assigned for the first iteration are developed, the 
underestimation of the first estimate becomes obvious. The second estimate in our example is 
230 FPs. Again, after the use cases assigned for the second iteration are developed, the 
difference between the actual iteration size and the iteration estimate is calculated. The 
difference between the actual size and the estimate should decrease. Please keep in mind that 
during the project, the actual size has not yet been acknowledged. Repeating the process, the 
estimate error is smaller from iteration to iteration and hopefully the exact value is then 
predicted. In the next section, this idea is applied to object-oriented size estimation. Please 
bear in mind that only the main idea of velocity is used in our iterative size estimation 
process. There is an important difference between the XP estimation process using velocity 
and our process. In the XP estimation process, the velocity value representing the 
development capability of the team is changed from iteration to iteration. The estimates of the 
user stories are not changed [4]. In our size estimation process, the difference between the 
estimated and actual value for the iteration is used to calculate the correction factor. The 
correction factor is then applied to the original size estimates. 
 

4 Iterative size estimation 
In this section, the process of size estimation in iterative development is described using a 
simplified example. The process is built on two size estimation techniques. The early estimate 
employs use cases and activity diagrams to foretell the size of the completed project. The 
project size is expressed in function points (FP). Then, a new estimate is made after a domain 



class model is conducted in the first iteration. The difference between both estimates is used 
to improve size estimates for the use cases assigned to future iterations. Figure 3 shows an 
example of a use case diagram with four use cases (UC1-UC4). The first two use cases (UC1 
and UC2) are assigned to the first iteration, UC3 to the second and UC4 to the last iteration. 
 

 
Figure 3: Sample Use Case Diagram 

 Project Size in Function Points (FP) 
 Iteration 1 Iteration 2 Iteration 3 
 Early 

Estimate 
Final Size Early  

Estimate 
Final Size Early 

Estimate 
Final Size 

UC1 xE1 x1=xE1+d1     
UC2 xE2 x2=xE2+d2     
UC3 xE3 N/A xEC3=xE3* 

(1+r1) 
x3=xEC3+d3   

UC4 xE4 N/A xEC4=xE4* 
(1+r1) 

N/A xEC4 
=(xE4*r1)*r2 

x4=xEC4+d4 

Iteration Total 
Size (FP) 

sum(xE1: 
xE2) 

sum(x1:x2) xEC3 x3 xEC4 x4 

Project Total 
Size (FP) 

sum(xE1: 
xE4) 

sum(x1:x2)+ 
sum(xE3:x4E4) 

sum(x1:x2)+ 
sum(xEC3:xEC4) 

sum(x1:x3)+ 
xEC4 

sum(x1:x3)+ 
xEC4  

sum(x1:x4) 

Table 2: The Process of Size Estimates in Iterative Development 

 
 
 Project Size in Function Points (FP) 
 Iteration 1 Iteration 2 Iteration 3 
 Early 

Estimate 
Final Size Early  

Estimate 
Final Size Early 

Estimate 
Final Size 

UC1 xE1 x1=xE1+d1     
UC2 xE2 x2=xE2+d2     
UC3 xE3 N/A xEC3=xE3* 

(1+r1) 
x3=xEC3+d3   

UC4 xE4 N/A xEC4=xE4* 
(1+r1) 

N/A xEC4 
=(xE4*r1)*r2 

x4=xEC4+d4 

Iteration Total 
Size (FP) 

sum(xE1: 
xE2) 

sum(x1:x2) xEC3 x3 xEC4 x4 

Project Total 
Size (FP) 

sum(xE1: 
xE4) 

sum(x1:x2)+ 
sum(xE3:x4E4) 

sum(x1:x2)+ 
sum(xEC3:xEC4) 

sum(x1:x3)+ 
xEC4 

sum(x1:x3)+ 
xEC4  

sum(x1:x4) 

Table 2 illustrates the iterative estimation procedure. The table is divided into three iterations 
(columns: Iteration 1 - Iteration 3). For each iteration, two values for size are provided. The 



Early Estimate is a size estimate that calculates the size from use cases and activity diagrams; 
the Final Size is the actual size. For the first iteration, labeled Iteration 1, the early estimate 
produced size estimates xE1, xE2, xE3 and xE4 for use cases UC1, UC2, UC3 and UC4. Since 
only UC1 and UC2 are assigned to the first iteration, the iteration total is the sum of size 
estimates for all use cases in this iteration (in our case UC1 and UC2). The project total is the 
sum of all four values. In the second column of the first iteration, the values for finished use 
cases are updated and the use cases scheduled for the subsequent iterations are marked with 
N/A. The early estimates xE1 and xE2 are updated with the values d1 and d2 that represent the 
difference between the early estimates and the actual size, in our example: x1 and x2. 
Following this change, the iteration and project totals are also updated. Before continuing to 
the next iteration we have to determine the value (r) that should be used to correct early 
estimates from the first iteration for the use cases that were not yet implemented (UC3 and 
UC4). The equation for this calculation is: 
 

21

21
1 xx

ddr
+
+

=  

 
After the first iteration is completed, the estimated values for use cases assigned to the first 
iteration are compared to the actual values. In the general form, the final total estimated 
project size for iteration K is defined as the estimated total project size for iteration K plus the 
difference with the actual size.  
 
Finally, the corrected estimated size for iteration K+1 can be calculated and used in 
calculating the estimated total project size in iteration K+1. The corrected estimate for 
iteration K+1 is calculated as the estimate in iteration K multiplied by the correction factor. 
The total project size estimate is composed of two parts: the first part is the sum of actual 
values from previous iterations and the second part is the sum of corrected values for future 
iterations.  
Now, we return to the example in Table 3. The estimate of the project total is the sum over the 
early estimates (x1, x4), the actual difference for the already implemented use cases annotated 
with d and estimates corrected with correction factors r that were calculated using lessons 
learned in the previous iteration. The same procedure is now applied once again for the 
second iteration. The outcome of the second iteration is a new correction factor (r2) that is 
then used for the last iteration.  
 

5 Conclusion 
Size and effort estimations are important metrics that, if accurate, have a positive impact on 
project planning and management. Although several methods, procedures, and principles for 
size and effort estimation exist, their applicability is limited when iterative development is 
used. In this paper the principles of iterative size and effort estimates were presented. The 
process is based on the use of velocity from extreme programming. It uses the difference 
between the estimated and actual values of a previous iteration to forecast the size of the next 
iteration as the sum of the size estimate and calculated correction value. The process is 
adapted to iterative development. The iterative estimation process was tested in a controlled 
environment. The results are very promising since the corrected values significantly 
outperformed original values in two out of three test projects.  
 



6 References 
 
[1.] Albrecht, Measuring Application Development Productivity, IBM Applications 

Development Symposium, pp. 83-92, 1979. 
[2.] G. Antoniol, C. Lokan, G. Caldiera and R. Fiutem, A Function Point-Like Measure for 

Object-Oriented Software, Empirical Software Engineering, 4 (1999), pp. 263-287. 
[3.] R. Asshman, Project Estimation: A Simple Use-Case Based Model, IT Pro, July/Avgust 

2004, pp. 40-44. 
[4.] K. Beck, M. Fowler, Planning Extreme Programming, Adison-Wesley, 2001. 
[5.] J. Bielak, Improving Size Estimates Using Historical Data, IEEE Software, 

November/December, 2000, pp. 27-35. 
[6.] COSMIC. COSMIC-FFP Measurement Manual - The COSMIC Implementation Guide 

for ISO/IEC 19761:2003, version 2.2., Common Software Measurement International 
Consortium (COSMIC), 2003. 

[7.] H. Diab, M. Frappier, and R. St Denis, A formal definition of function points for 
automated measurement of B specifications. Formal Methods and Software Engineering, 
Proceedings, pp. 483-494, 2002. 

[8.] D. D. Galorath, M. W. Evans, Software Sizing, Estimation, and Risk management, 
Auerbach Publications, 2006. 

[9.] IBM, Rational Method Composer - Rational Unified Process, version 7.1, 2006  
[10.] IFPUG, Function Point Counting Practices Manual, Release 4.2, International 

Function Point Users Group (IFPUG), Princeton Junction, USA, January 2004. 
[11.] ISBSG, Practical Project Estimation, A toolkit for estimating software development 

effort and duration. International Software Benchmarking Standards Group, 2001. 
[12.] ISBSG, ISBSG Estimating, Benchmarking and Research Suite R10 CD ROM. 

International Software Benchmarking Standards Group, http://www.isbsg.org, 2006. 
[13.] ISO, ISO/IEC TR 14143-1. Information technology - Software measurement - 

Functional size measurement, Part 1: Definition of concepts, First edition, ISO/IEC, 
1998. 

[14.] ISO, ISO/IEC TR 14143-2. Information technology - Software measurement - 
Functional size measurement, Part 2: Conformity evaluation of software size 
measurement methods to ISO/IEC 14143-1:1998, First edition, ISO/IEC, 2002. 

[15.] Jacobson, G. Booch, J. Rumbaugh, The Unified Software Development Process, 
Addison-Wesley, Second printing, April 1999. 

[16.] M. Jørgensen, U. Indahl, D. Sjøberg, Software effort estimation by analogy and 
"regression toward the mean", The Journal of Systems and Software, 68 (2003), p.p. 253-
262. 

[17.] J. Kaczmarek, M. Kucharski, Size and Effort estimation for applications written in 
Java, Information and Software Technology, 46 (2004), pp. 589-601. 

[18.] G. Karner, Use Case Points - Resource Estimation for Objectory Projects, Master 
Thesis, Linkøping University, Sweden, 1993 

[19.] L. M. Laird, M. C. Brennan, Software Measurement and Estimation: A Practical 
Approach, John Wiley & Sons, Inc., Hoboken, New Jersey, 2006. 

[20.] K. D. Maxwell, P. Forselius, Benchmarking Software Development Productivity, 
IEEE Software, January/February 2000, p.p. 80-88. 

[21.] P. Mohagheghi, B. Anda, R. Conradi, Effort Estimation of Use Cases for Incremental 
Large-Scale Software Development, ICSE'05, May 15-21, 2005, St. Louis, Missouri, 
USA, pp. 303-311. 



[22.] S. Moser, B. Henderson-Sellers, V. B. Mišoć, Measuring Object-Oriented Business 
Models, Proceedings of the Technology of Object-Oriented Languages and Systems - 
Tools-25, 1997, pp. 340 

[23.] OMG, Unified Modeling Language Specification, version 1.4., Object Management 
Group, 2001. 

[24.] OMG, Unified Modeling Language: Superstructure Specification, version 2.0, Object 
Management Group (OMG), 2006. 

[25.] V. Rajlich, P. Gosavi, Incremental Change in Object-Oriented Programming, IEEE 
Software July/Avgust 2004, pp. 62-69 

[26.] Total Metrics, Total Metrics - Levels of Counting. http://www.totalmetrics.com, pp. 1-
8. 2001. Total Metrics, 2001. 

[27.] Trendowicz, J. Heidrich, J. Münch, Y. Ishigai, K. Yokoyama, N. Kikuchi, 
Development of a Hybrid Cost Estimation Model in an Iterative Manner, ICSE'06, May 
20-28, 2006, Shanghai, China, pp. 331 - 340 

[28.] UKSMA, UKSMA. Mk II Function Point Analysis, Counting Practices Manual. 
version 1.31. United Kingdom Software Metrics Association (UKSMA), 1998. 

[29.] Zivkovic, M. Hericko, B. Brumen, S. Beloglavec, I. Rozman, The Impact of Details in 
the Class Diagram on Software Size Estimation, Informatica (Lithuania), Volume 16, 
Number 2, 2005 

[30.] Zivkovic, I. Rozman, M. Heričko, Automated Software Size Estimation based on 
Function Points using UML Models, Information & Software Technology, Volume 47, 
Issue 13, 1 October 2005, Pages 881-890 

 

Aleš Živkovič is an Assistant Professor at the University of Maribor. His research work covers different aspect 
of object technology with the emphasis on UML, software processes, Java platform and metrics. He has more 
then ten years of experience with OT and has prepared and carried out numerous seminars and workshops on 
Java SE and EE, UML, RUP, and XML. He gained his practical experiences in cooperation with industry on 
several projects. Aleš received his master degree in 2000 and PhD degree in 2005 both from University of 
Maribor. He is Certified Information System Auditor (CISA) and hold professional certificate for Object 
Oriented Analysis and Design with UML and PRINCE 2 Practitioner certificate. 

 

Marjan Heričko is an Associate Professor at the University of Maribor, Faculty of EE&CS, Institute of 
Informatics. He received his M.Sc. (1993) and PhD (1998) in computer science from the University of Maribor. 
His research interests include all aspects of IS development with emphasis on metrics, software patterns, process 
models and modelling. Marjan is the deputy head of the Institute of informatics and scientific coordinator of the 
Slovenian national platform for software and services. 

 

 


