
Object Oriented Software

Counting with Multiple Boundaries

Charles Wesolowski OCUP OCSMP OCRES CFPS

Chief Architect

Special Projects Division

QinetiQ North America Systems Engineering Group

890 Explorer Blvd.

Huntsville, AL 35806

Overview

• Functional Analysis and Architecture

– Boundaries

• Functional Analysis and Specification

– UML Analysis Artifacts

• Functional View of an Object

– Elements of IFPUG Function Point Analysis

• Components

– Services

Functional Analysis and Architecture

• Functional Analysis organizes information into a model
– Its “primary purpose is to formulate a model of the problem

domain that is independent of implementation considerations.”
[UML 2.0 Infrastructure]

– “The definition of functionality, also referred to as functional
analysis, is not the same as structured analysis in software
development and does not presume a functionally oriented
software design. The definition of functions, their logical
groupings, and their association with requirements is referred to
as a functional architecture.” [CMMI Second Edition]

• Functional Architecture
– Specified using a formal language

– Illustrated using Unified Modeling Language (UML)

– Measured using ISO Functional Size Method

Calculator Example

 User Requirements -- Four-Function Calculator

 Provide the capability to:

 Add

 Subtract

 Multiply

 Divide

 Represents an example of stateless software

 There are no storage requirements

 All functional size is transactional

Specification and Analysis Artifacts

Boundary Calculate

 add : EO

 Inputs

 augend, addend

 Outputs

 sum

 subtract : EO

 Inputs

 subtrahend, minuend

 Outputs

 difference

 multiply : EO

 Inputs

 multiplicand, multiplier

 Outputs

 product

 divide : EO

 Inputs

 dividend, divisor

 Outputs

 quotient

 Responses

 DivideByZero

Functional Specification Interface Models

Multiple Views of a Four-function Calculator

Analysis Models

Action Model of Functions

Functional Size Methods quantify functionality
 by accounting for the amount of data a function processes

A UML Action is “the fundamental unit of executable functionality”

 -- All functions have a trigger input

-- Some functions have a response output

Calculator Functional Size

Boundary: Calculate

Transactional Functions: Type DET FTR Function Points

add EO 4 0 4

subtract EO 4 0 4

multiply EO 4 0 4

divide EO 5 0 4

Elements of Functional Architecture

• Boundary

– A structural element that indicates a partition

• Represents a group of Functional User Requirements

• Function

– A behavioral element that indicates an operation

• Represents a Functional User Requirement

• Characterized by Inputs, Outputs, Responses, Reads,
Writes

• Entity

– A structural element that indicates persistent data

• Represents Domain Objects

• Organized by groups of data

Functional Size is measured

from the User Perspective

Component View of a Simple

Software System

Components are key elements of software architecture that indicate countable software boundaries
They represent the fundamental partitions in Service Oriented Architectures

Counter Example

 Counter Software – User Requirements

 The software shall provide an operation to reset the

counter to zero.

 The software shall provide an operation to increment

the counter and output its current value.

 Use Case Model

Robustness Analysis Model of

Counter

Robustness Analysis links the behavioral model to the persistent data model
This view assists in identifying FTRs and Data Function types

Action Model of Counter

Action Models detail data coupling between Elementary Processes
And assist in counting logical files

Counter Functional Specification

Entity State
 Count # RET
 value # DET

Boundary Counter
 reset : EI # EP
 Writes
 State.Count.value

 next : EO # EP
 Outputs
 countValue
 Reads
 State.Count.value
 Writes
 State.Count.value

The functional specification contains all information necessary to compute functional size
All UML analysis artifacts are traced to the specification

Component View of Counter

Component models represent reusable functional software entities
The mechanics of constructing and deploying components relates to Software Technical Requirements

Analysis Reveals Requirements

Ambiguity

Component View of Complex

Software System

Complex software systems are comprised of coupled components
Each has its own functional size

Components may exhibit behavioral or data dependencies

Behavioral Dependency

Technical Characteristic of OO

Software

Logical Files in OO Software

Complex Software System

with Functional Specification

Complex software systems are comprised of coupled components
Each has its own functional size

Components may exhibit behavioral or data dependencies

Entity LogicalFile

 Record

 value

Boundary Object

 ElementaryProcess : EI

 Inputs

 value

 Writes

 LogicalFile.Record.value

Boundary AnotherObject

 AnotherElementaryProcess : EI

 Inputs

 value

 Writes

 LogicalFile.Record.value

Functional Specification

Counted Model

Multiple Boundaries

Logical File Encapsulated by Object boundary
makes a Data Function Contribution to AnotherObject boundary

Moving Forward

• Components are natural software boundaries

– Modeled using UML

– Conform to Object Oriented Software Paradigms

– Encapsulate Services via Interface Specifications

– Deployable in Service Oriented Architectures (SOA)

• Components are Countable using the IFPUG method

– Proven measurement of functional size

– Applied to industry best practice for software development

• Component Architectures

– Facilitate communication of requirements to technical staff

– Provide concrete rather than abstract partitions of functional analysis

Questions????

Backup Slides

Functional View of an Object

