QinetiQ

North America

Object Oriented Software
Counting with Multiple Boundaries

Charles WesolowsKIi ocur ocswe ocres cres

Chief Architect
Special Projects Division
QinetiQ North America Systems Engineering Group
890 Explorer Blvd.
Huntsville, AL 35806

Overview

* Functional Analysis and Architecture
— Boundaries

* Functional Analysis and Specification
— UML Analysis Artifacts

* Functional View of an Object
— Elements of IFPUG Function Point Analysis

« Components
— Services

/

orks

SSSSSSSSSSSSSSSSSSSSSSS

Functional Analysis and Architecture

* Functional Analysis organizes information into a model

— Its “primary purpose is to formulate a model of the problem
domain that is independent of implementation considerations.”
[UML 2.0 Infrastructure]

— “The definition of functionality, also referred to as functional
analysis, is not the same as structured analysis in software
development and does not presume a functionally oriented
software design. The definition of functions, their logical
groupings, and their association with requirements is referred to
as a functional architecture.” [CMMI Second Edition]

« Functional Architecture
— Specified using a formal language
— lllustrated using Unified Modeling Language (UML)

— Measured using ISO Functional Size Method

QinetiQ

Calculator Example

« User Requirements -- Four-Function Calculator

« Provide the capabillity to:
. Add
« Subtract
« Multiply
« Divide
« Represents an example of stateless software

« There are no storage reguirements
o All functional size Is transactional

QinetiQ

)
works Specification and Analysis Artifacts

SPECIAL PROJECTS DIVISION

Boundary Calculate
Calculate add : EO
Inputs
O augend, addend -
add Outputs <<interface==
- sum Calculate
% i subtract subtract : EO add(in augend : , in addend : , out sum: }
User _____“O Inputs . subtract(in subtrahend : | in minuend : | out difference :)
subtrahend, minuend - . . L)
muttiply multiphy(in multiplicand : | in multiplier : | out product : }
\ Outputs divide(in dividend : | in divisor : | out quotient : } : response
difference : :
divide multiply : EO
Inputs
multiplicand, multiplier
Outputs
(5 product -
T~ add divide : EO =<interface>>
O Inputs Calculate
F(D +—— subtract dividend, divisor 2340 o] Calculator
Calculate —————1 O Outputs subtract()
I multiply quotient miuttiphy () -
Responses .
DivideByZero divide()
divide
Analysis Models Functional Specification Interface Models

Multiple Views of a Four-function Calculator

QinetiQ

North America

Action Model of Functions

A UML Action is “the fundamental unit of executable functionality”

-- All functions have a trigger input

==trigger==
i ==in== addend ==0Ut== 5Um
Inputs | add Qutputs I
==in== augend

-- Some functions have a response output
==trigger== ==responses=

Inputs ==in=> divisar divide Outputs
<=in== dividend ==0ut=> guotient

Functional Size Methods quantify functionality
by accounting for the amount of data a function processes

QinetiQ

Calculator Functional Size

Boundary: Calculate

Transactional Functions: Type DET FTR Function Points
add EO 4 0 4
subtract EO 4 0 4
multiply EO 4 0 4
divide EO 5 0 4

<<interface==
Calculate

add(in augend : , in addend : , out sum : }

subtract(in subtrahend : |, in minuend : , out difference :)
multiphy(in multiplicand : , in multiplier : , out product : }
divide(in dividend : | in divisor : , out quotient :) : response

QinetiQ

;,ks Elements of Functional Architecture

« Boundary
— A structural element that indicates a partition
« Represents a group of Functional User Requirements
« Function
— A behavioral element that indicates an operation
* Represents a Functional User Requirement

« Characterized by Inputs, Outputs, Responses, Reads,
Writes

« Entity
— Astructural element that indicates persistent data
« Represents Domain Objects
« Organized by groups of data

FO O O

Boundary Function Entity

QinetiQ

Functional Size Is measured
from the User Perspective

The type of user has no impact on
User - the functional size of the Object.

- xﬁ{UEE—E}}

can play the role of a user.

Another software object IT

-
- eLygesEs

AnotherObject (f)
: FTR -)
ElementaryProcesses LogicalFiles

®

At a minimum the functional size of the Object is the size of
itz elementary processes and the state information that it
encapsulates as itz internal logical files.

QinetiQ

Component View of a Simple
Software System

simple software system)

<zcomponent== {I
Object

<=provided interfaces==

() Boundary
Boundary

<<reglizations==

ElementaryProcess

LogicalFile

Components are key elements of software architecture that indicate countable software boundaries
They represent the fundamental partitions in Service Oriented Architectures

QinetiQ

Counter Example

« Counter Software — User Requirements

« The software shall provide an operation to reset the
counter to zero.

« The software shall provide an operation to increment
the counter and output its current value.

« Use Case Model

Counter

Countlser T O

next

QinetiQ

Robustness Analysis Model of
Counter

reset _
/ ==eritess

CounterBoundary State

— Count value
nextiout countalue :)
\ @ ==treadivrite==

next

Robustness Analysis links the behavioral model to the persistent data model
This view assists in identifying FTRs and Data Function types

QinetiQ

ff,ks Action Model of Counter

SPECIAL PROJECTS DIVISION

==frigoer=

s=write== State Count value

~tate

==read== State Court value ==wyrte== State Count value

. ==out== countvalue
| ==trigger=», - Outputs I

Action Models detail data coupling between Elementary Processes
And assist in counting logical files

QinetiQ

North America

o,ks Counter Functional Specification

IIIIIIIIIIIIIIIIIIIIIII

Entity State

Count # RET
value # DET
Boundary Counter
reset : El # EP
Writes

State.Count.value

next : EO #EP
Outputs
countValue
Reads
State.Count.value
Writes
State.Count.value

The functional specification contains all information necessary to compute functional size
All UML analysis artifacts are traced to the specification

QinetiQ

SPECIAL PROJECTS DIVISION

wa,k, Component View of Counter

counter : simple software system)

<<component== {I

[,
Counter Data Functions:
<provided interfaces=> State ILF RET:1 DET:1 FP7
Tranzaction Functions
0 CounterBoundary ~ f | reset El FTR:1 DET:1 FP:3
CounterBoundary <<reglizationg== next =0 FTR DET2 FRa
State Total Functional Size FP:14

next
reset

Component models represent reusable functional software entities
The mechanics of constructing and deploying components relates to Software Technical Requirements

QinetiQ

North America

Analysis Reveals Requirements
Ambiguity

L‘.uuntLlser Cuunterﬂuundar}f reset ‘next Z%’[:E?ITE
reset() invoke | | |
Q | write(count.value, 0)
| | | Q
. | | .
bop | | | | |
next() ,J-‘ invoke | l |
\T‘ | read({count.value)
| | | value ji
{ ______________________________
| | | write[count value, valug+1} ,J_
|
| alt : requirements Jimhlgurt'_.r) i LI'
| countValue Il‘ output{value) I l 4]! _________ Counts 0,1 .2.3.4---&‘
Ly I I | |
| | | |
countValue L output{value+1) | I _| _________ Counts 12345 ll‘
I - | T |
I | | | |
| |]] |

QinetiQ

) Component View of Complex
works Software System

complex zoftvware system)

==component== {I

==Ccomponent== {I
AnotherOhbject

Ohject

==provided interfaces==
==provided interfaces==

AnotherBoundary
O e e intert - @ Boundary
AnotherBoundary FEqUIrEd INertaces Boundary
Boundary =zrealizations==
. ElementaryProcess
==realizationz=>=
LogicalFile

AnotherElementaryFrocess

& zoftware system partitioned by non-functional user reguirements.

Complex software systems are comprised of coupled components
Each has its own functional size
Components may exhibit behavioral or data dependencies

QinetiQ

North America

L ks Behavioral Dependency

SPECIAL PROJECTS DIVISION

% |—O An Elementary Process in one object does NOT

___________ } AnotherBoundary contribute to the functional size of Another Object.
AnotherlUser

sy

AnotherObject |_O

<Zusesss” Boundary

O O

AnotherElementaryProcess ==behavior== ?’} ElementaryProcess

Elementary Process only count toward the Transactional
Function Size of their encapsulating object.

QinetiQ

North America

) Technical Characteristic of OO

orks

Software

A technical characteristic of object oriented software
|‘O requires that an Object’s persistent state is accessed via
i }. AnotherBoundary one of its elementary processes, indicated by the
AnotherlUser <<behavior== and <<data=> dependencies.
i

This technical characteristic is irrelevant to the logical view
of the software from a functional perspective.

AnotherObject |_O

O

AnotherElementaryProcess {-::hehﬂ'l.riurp}-} ElementaryProcess ~ edatass -* LogicalFile

FTR

QinetiQ

North America

ff,k, Logical Files in OO Software

SPECIAL PROJECTS DIVISION

% |‘O An Object provides a Data Function Contribution to Another Object.
"""" } AnotherBoundary
AnotherUser In this case, Object appears as Another Logical File to Another User.

S

AnotherObject |_O

- -.é.;;ﬁs-és.-:::: =T '> Eﬂll ndﬂw {:]-

The behavior of Object NEVER
contributes to the functional
size of Another Object.

For that reason, it is not
indicated on this diagram.

@ AnotherFTR

AnotherElementaryProcess AnotherLogicalFile

If Another Elementary Process modifies Another Logical File, it
iz classified as an ILF, otherwize it is clazsified az an EIF
when computing the functional size of Another Object.

QinetiQ

North America

) Complex Software System
works with Functional Specification

==component== é{]

Ohject
==provided interfaces==
Boundary
Entity LogicalFile
==realizationz== Record
ElementaryProcess value
LogicalFile)
Boundary Object
ElementaryProcess : EI
Inputs
value
Bourdary Writes
LogicalFile.Record.value
==COMpPOnEnt=s= é] Boundary AnotherObject
AnotherObject AnotherElementaryProcess : EI
Inputs
==provided interfaces== value
A niotherBoundary Writes '
L LogicalFile.Record.value
==required interfaces==
Boundaty
==realizations=:= Functional Specification

AnctherElemertaryProcess

5

AnotherBoundary

Complex software systems are comprised of coupled components
Each has its own functional size
Components may exhibit behavioral or data dependencies

QinetiQ

North America

) Counted Model
works Multiple Boundaries

==component== {I
: [~
Object Diata Functions:
=<provided interfacesss : Lagg.alFl:f . ILF RET:1 DET:1 FP:¥
ranzaction Functions:
Solndzl ElemertaryProcess El FTR: DET:A FP:3
=srealizations== Total Functional Size : FP:10
ElemertaryProcess
LogicalFile
Bourdary
==COMmponent== {I
AnctherOhject I
ded intart Data Functions:
SEproviced INertaces== LogicalFils ILF RET:1 DET:1 FR:7
SnotherBoundary] Tranzaction Functions:
==required interfaces== AnotherElementaryProcess Bl FTR:1 DET:1 FP:3
Boundar
v Total Functional Size : FP:10
==realizations==
AnctherElementaryProcess

5

AnotherBoundary

Logical File Encapsulated by Object boundary
makes a Data Function Contribution to AnotherObject boundary

QinetiQ

North America

Moving Forward

« Components are natural software boundaries
— Modeled using UML
— Conform to Object Oriented Software Paradigms
— Encapsulate Services via Interface Specifications
— Deployable in Service Oriented Architectures (SOA)

« Components are Countable using the IFPUG method
— Proven measurement of functional size
— Applied to industry best practice for software development

« Component Architectures
— Facilitate communication of requirements to technical staff
— Provide concrete rather than abstract partitions of functional analysis

QinetiQ

Questions????

Backup Slides

: Functional View of an Object

orks

SPECIAL PROJECTS DIVISION

Functional analysis of object oriented software reguires understanding the technigues used to
organize functionality and data within boundaries called objects, using a process of
encapsulation that contributes to the cohesion of the software represented by the object.

Encapsulation groups functionality and data in the form of behaviors and persistent state
information called an object. Function Point Analysis measures the functionality delivered to the

user by describing the object in terms of its Elementary Processes and Logical Files.
An object encapsulates its behavior and

the per=sistent data that defines itz state.

An object iz defined by a boundary specification called an interface, that contains an

gnumeration of its funclionality expressed as operations.
|_O Object
. User ""1ij3ssii > Boundary -oooooooe-
The user view is dependent on the -7 .
object's interface, represented as a ;'
boundary class. N
Elementary Processes are represented : 1.# =
as interface operations. ; (:f)
- - lll. |l__I|-H = -
There is always a behavioral ' ElementaryProcesses LogicalFiles
dependency between the user and the N *
software. ; L :
A state dependency iindicates an : - !
instance of a logical file, although Elementary Processes are realizations of Persistent State information that is
objects are not required to maintain interface operations that may affect the maintained by the Object through
object state, indicated by references to itz Elementary Processes
constitutes an Internal Logical File.

state information.
logical files (FTR).

QinetiQ

North America

